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Effects of noise and variations on the duration of transient oscillations in unidirectionally

coupled bistable ring networks
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We study effects of spatiotemporal noise and spatial variations on long-lasting transient oscillations in ring
networks of unidirectionally coupled bistable elements (neurons), the duration of which increases exponentially
with the number of neurons. On the one hand, spatiotemporal noise tends to sustain the transient oscillations.
The duration of the oscillations occurring from fixed initial conditions changes nonmonotonically with noise
strength and takes the maximum value at intermediate noise strength. Further, the duration of the oscillations
is distributed in the form of the second power law and the mean duration increases with the number of neurons
in the presence of an optimal noise. On the other hand, spatial variations degrade the exponential increases in
the duration of the oscillations with the number of neurons. In the presence of fixed biases in the steady states
of the neurons, there is a flat region in the distribution of the duration of the oscillations occurring under
random initial conditions and an increase in the mean duration is almost linear with the number of neurons.
Further, the duration of the oscillations in an ensemble of the networks with random biases drawing from an
identical distribution is distributed in the form of the second power law and the ensemble mean increases in

proportion to the five-halves power of the number of neurons.
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I. INTRODUCTION

Nonlinear coupled dynamical systems, which show vari-
ous spatiotemporal patterns, synchronization of oscillations,
complicated bifurcations and chaos, have been of wide inter-
est in various fields [1]. In this paper we consider ring net-
works of unidirectionally coupled elements with sigmoidal
input-output relations. We call this network and the element
a ring neural network and a neuron, respectively, according
to the conventional use, though the structure of the network
is rather simple and is not so related to artificial neural net-
works and actual nervous systems. The ring neural networks
have been studied from the viewpoint of dynamics of neural
networks [2], for recurrent neural networks [3], and as cyclic
feedback systems [4]. Further, it has been shown that the
discrete systems of them have multiple stable orbits [5], the
networks with delays cause various spatiotemporal patterns
[6] and long-lasting transient oscillations [7,8], and the net-
works with inertia show complicated and chaotic response
[8]. These various properties are of general interest in non-
linear sciences apart from neural networks.

When the number of negative couplings is even and the
coupling gains are larger than unity, the ring neural networks
are globally bistable. Recently, however, it was shown that
the networks without delays show long-lasting transient os-
cillations in computer simulation [9,10] and in experiments
on its analog circuit [11]. Further, the duration of the tran-
sient oscillations was shown to increase exponentially with
the number of neurons in the networks [12]. The networks
then never reach their stable steady states in a practical time
when the number of neurons is large. This exponential de-
pendence of transient time on system size is of importance
since it is difficult to distinguish transient states and asymp-

*Corresponding author. FAX: +81-87-864-2262;

horikawa@eng.kagawa-u.ac.jp

1539-3755/2009/80(2)/021934(15)

021934-1

PACS number(s): 87.19.1j, 05.40.—a, 05.45.—a

totically stable states, and to know which is observed then in
actual systems. Although rings of a large number of elements
are rather artificial, their properties are of interest from a
viewpoint of the dynamics of nonlinear systems.

Exponential increases in transient time with system size
were first found in transient patterns (kinks, fronts, and
pulses) in a one-dimensional bistable reaction-diffusion
equation, in which the motion of the patterns becomes ex-
tremely slow as the size of domains increases [13]. It has
been shown that the duration of these transient patterns in-
creases exponentially with the length of domains [13,14].
Similar extremely slow motion of patterns has been found in
several high-dimensional reaction-diffusion systems, which
are applied to combustion, chemical reaction, cell biology,
nerve spike propagation, ecological systems, and population
dynamics, for instance [15], and is called metastable dynam-
ics or dynamic metastability [16]. Further, such exponential
dependence has also been found in several complex systems,
e.g., transient chaos in coupled map lattices, reaction-
diffusion equations and networks of pulse-coupled neurons
[17], and ordered patterns in neural networks [18].

The mechanism of the exponential increases in the dura-
tion of the oscillations in the ring neural networks was ex-
plained with a kinematical model of the traveling waves
[12]. The oscillations are caused by the propagating bound-
aries and inconsistencies between the blocks of the neurons
in which the signs of their states are the same. Similar
traveling waves, the duration of which is expected to show
exponential dependence on the number of elements, were
also reported in a discrete time coupled system with elements
of cubic nonlinearity [9]. This kinematics of the traveling
waves in the networks is qualitatively the same as that
of the metastable patterns in the reaction-diffusion systems
[13-16]. The kinks and pulses interact with each other
through their wave forms, the strength of which decreases
exponentially with distances between them. Symmetric bista-
bility and linear relaxation are common to these systems and
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are essential for the exponential increases in the transient
time with the system size.

Similar kinematics also exists in spike propagation in a
nerve fiber [19] and car-following models in traffic flow
problems [20]. In a nerve spike train, it is known that the
speeds of spikes depend on the interspike intervals to the
preceding spikes owing the recovery process of nerve mem-
brane. A finite spike train is then unstable but can sustain in
a nerve fiber of actual length since difference in the speeds
decreases exponentially with the interspike intervals. In a
traffic flow, it has been shown that changes in patterns of
traffic jams are very slow in a second-order optimal velocity
model with delay [21]. The largest Floquet multiplier of un-
stable periodic solutions decreases to unity exponentially
with the number of cars on a single-lane circular road, which
implies the duration of the associated traffic jams increases
exponentially with the number of cars. This property of the
Floquet multiplier is also the same with that of the unstable
periodic solution in the ring neural networks [10].

Further, the structure of the ring neural network is quali-
tatively the same as that of a ring oscillator, which is a cir-
cular chain of inverters and sometimes including buffers
[22]. It generates stable oscillations when the number of in-
verters is odd and is widely used as an easy variable-
frequency oscillator. Several dozens of inverters are used to
obtain oscillations of low frequency for practical use and it is
known that unfavorable oscillations of higher harmonics
happen to be observed. Although such higher harmonics are
considered to be unstable and transient unless inductance or
inertia exists [23], they can be sustained in a long time owing
to exponential increases in transient time with system size.
Thus the properties of the ring neural networks are also of
interest in the field of electronics engineering.

In actual networks and circuits, however, spatiotemporal
fluctuations and variations are inevitable. It is known that
they can cause various qualitative changes in behaviors in
nonlinear systems, e.g., noise-induced phase transitions, 0s-
cillations and synchronization, stochastic and coherence
resonances, and the generation and motion of spatiotemporal
patterns [24]. Concerning to metastable transient patterns in
the reaction-diffusion systems, it has been shown that spatial
inhomogeneity stabilizes standing stationary patterns, which
is known as pinning [25]. It has also been shown that asym-
metry in the reaction function degrades the increasing rates
of the duration of the transient fronts to a polynomial order
of the domain size, while spatiotemporal noise tends to in-
crease their duration [14]. In the ring neural networks, the
same tendency to degradation in the increasing rates of the
duration of the oscillations was reported in the experiment
with an analog circuit and it was ascribed to random offset
voltages in operational amplifiers [11,12]. It was also shown
that spatiotemporal noise causes characteristic correlations in
a series of the periods of oscillations in the networks of ring
oscillator type [26,27].

In this study we consider effects of spatiotemporal fluc-
tuations and spatial variations on the duration of the transient
oscillations in the ring neural networks with a kinematical
model of the traveling waves, in which noise and variations
are taken into account. The high-dimensional differential
equation system of the network with a large number of neu-
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rons is reduced to a first-order differential equation of the
locations of the traveling waves with a fluctuation term. The
kinematical approach makes difficulty due to the high-
dimensionality tractable. The kinematics is common to expo-
nential dependence of transient time on system size in
coupled or extended symmetric bistable systems as well as
the reaction-diffusion systems, so that it can be applied to
transient patterns in them, e.g., traffic flow models and dis-
crete time coupled systems. Further, the kinematical ap-
proach might be applicable to chaotic transient behaviors in
the complicated systems, e.g., coupled map lattices and neu-
ral networks.

The rest of the paper is organized as follows. A model of
the ring neural network with noise and variations is given in
Sec. II. Transient behaviors of the networks are then shown
with computer simulation. Effects of spatiotemporal noise in
the duration of the transient oscillations are considered in
Sec. III. It is then shown that the mean duration of the oscil-
lations occurring from fixed initial conditions increases in
the presence of noise of intermediate strength, which is a
resonancelike behavior. Further, the distribution of the dura-
tion has the form of a power law of exponent 2 and the mean
duration increases with the number of neurons. A part of the
results in Sec. III was already reported in [26]. In Sec. 1V,
effects of random biases in the output functions of the neu-
rons on the duration of the transient oscillations are consid-
ered. It is then shown that random biases degrade the expo-
nential increases in the duration of the oscillations so that the
duration increases almost linearly with the number of neu-
rons. However, the duration of the oscillations occurring
from fixed initial conditions can increase in the presence of
random biases of intermediate variations. Further, the distri-
bution of the duration occurring under random initial condi-
tions has the form of a power law of exponent 2 in an en-
semble of the networks with random biases under an
identical distribution, and the mean duration in the ensemble
increases with the five-halves power of the number of neu-
rons. Finally, conclusion and future work are given in Sec. V.
The properties of the duration of the transient oscillations in
the absence of noise and variations are summarized in the
Appendix for readers’ sake.

II. RING NEURAL NETWORKS WITH NOISE AND
RANDOM BIASES

The following ring networks of neurons are considered:

dxy(0)/dt = = x(t) + flx (1) = xp )] + oo (1),
dxn(t)/dt= _xn(t)+f[x;1—1(t) _xb(n—l)]+o-an(t)7 (2 =n= L),

f(x) =tanh(gx), (¢>1),

E{Wn(t)} = O, E{Wn(t)wn’(t,)} = 51111’ 5(t - t,)’

E{'xb(n)} =nmy, E{(xb(n) - mb)(xb(n’) - mb)} = O-iénn’ 5 (1)

where x, is the state of the nth neuron, L is the number of
neurons, f(x) is the output function of the neurons, and g is

021934-2



EFFECTS OF NOISE AND VARIATIONS ON THE...

(a)X1 nn n n An a
| o e v o e e T le———

l/ aaa
X
10

100 t 4700

b) X PFfre S

W7/

11800
X1 L_J \_4 L_IL_JL_JL_J
X““//////
100 t 0

FIG. 1. Spatiotemporal patterns of the states of neurons in the
network of L=40 and g=10.0 with no noise and biases (a), with
noise (o,=0.1) (b), and with random biases (m,=0,0,=0.01) (c).
Upper panels: time series x,(f) of the state of the first neuron.
Lower panels: the states of neurons (positive: black, negative:
white).

the coupling gain. The neurons are unidirectionally coupled
and the output of each neuron is transmitted to the next neu-
ron successively. The output of the Lth neuron is then fed
back into the first neuron. Gaussian white noise w,(¢) with
the strength o, is added to each neuron 1ndependently The
random bias Xp(n) with the mean m;, and variance o’2 in the
output function is also added and is fixed randomly for each
n(l=n<L).

In the absence of noise and biases, the origin x,=0 (1
=n=L) is globally stable when the absolute value of the
coupling gain is less than 1 (|g| < 1). When the couplings are
positive and g>1, the network has a pair of the nonzero
steady states: (xy,x,...,x7)=*(x,,%,,...,%,), x,=f(x,)
(x,>0) and is globally bistable. It has been shown that it
takes a long time for the network to reach one of the steady
states when the number of neurons is large during which the
states of the neurons oscillate [9-12]. Figure 1(a) shows an
example of spatiotemporal patterns in the states of the neu-
rons in the network with g=10.0 and L=40 under random
initial conditions on x,(0). A time series x,(z) of the state of
the first neuron is shown in the upper panel. A spatiotemporal
pattern of the states of the neurons is shown in the lower
panel, in which black and white regions correspond to the
states of positive and negative sings, respectively. In
the transient states, the neurons are divided in two blocks, in
which the signs of their states x,, are the same in each block,
i.e., positive or negative and between which the signs differ.
Two boundaries of the two blocks then propagate

in the direction of the couplings as (xi,x,,...,x):(+,+,
+’.”,+/7_$_’_9”"_/) . (_/’+’+,'..9+a+/7_’_’.”7_)
—(=,=/,+, ", +,+,+/,—, -+ ,—)—---, where slashes de-

note boundaries. The states of the neurons change their signs
as the boundaries pass and then the network oscillates. This
mechanism of the oscillations is quantitatively the same as a
ring oscillator, which is a circular chain of inverters and
shows stable oscillations [22].

The transient oscillations are such traveling waves of the
boundaries of the blocks. The velocities of the boundaries
depend exponentially on the numbers of neurons in the
blocks (the block lengths) [12], which will be shown in Sec.
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III. As the number of neurons increases it can take an expo-
nentially long time until the two blocks merge depending on
the initial states, so that the network reaches one of the
steady states and the oscillation ceases. Further the duration
of the oscillations occurring from random initial states is
distributed in a power-law form of exponent 1. The proper-
ties of the duration of the transient oscillations in the absence
of noise and biases are shown in the Appendix. Note that,
although we use the positive common coupling gain g > 1 for
simplicity, the networks with even numbers of neurons and
negative coupling gains less than the value of the Hopf bi-
furcation point [g<<—1/cos(w/L)] are equivalent to the net-
works of positive coupling gain through changes in the signs
of the states of the alternate neurons (x,,,— =Xy, =m
=L/2). Further, when the coupling gains vary in neurons,
the network is equivalent to that with the all positive cou-
pling gains through appropriate changes in the signs if the
number of negative coupling gains is even. When the number
of negative coupling gains is odd, however, the network
qualitatively changes its property and can show a stable os-
cillation, which corresponds to a ring oscillator.

However, spatiotemporal noise and random biases have
effects on the duration of the transient oscillations. Figure
1(b) shows a transient pattern in the states of the neurons in
the network with noise of strength ¢,=0.1 under the same
random initial condition as that in Fig. 1(a). It can be seen
that the noise causes random fluctuations in the wave form of
the state of the first neuron. Further, the duration of the os-
cillation last longer than that without noise (a) and the net-
work reaches to another steady state (x,=x,(1=n=L)). In
Sec. III, it will be shown that the spatiotemporal noise tends
to extend the duration of the transient oscillations. Figure
1(c) then shows a transient pattern in the states of the neu-
rons in the network with random biases of mean m,=0 and
variance 0;=0.012 under the same initial condition, in which
it can be seen that the oscillation ceases quickly. In Sec. IV,
it will be shown that the spatial biases degrade the increasing
rate of the duration of the oscillations from an exponential
order to a polynomial order of the number of neurons.

II1. INCREASES IN THE DURATION OF THE
OSCILLATIONS DUE TO SPATIOTEMPORAL NOISE

In this section, we consider effects of additive spatiotem-
poral noise a,w,() on the duration of the transient oscilla-
tions in the ring neural networks with the positive couplings
with the gain larger than unity (g >1). The random biases in
Eq. (1) are set to be zero (x,(,)=0,1=n=L) in this section.
As mentioned in Sec. II, the neurons are divided in blocks by
the signs of their states and the boundaries of the blocks
propagate in the network. The blocks merge with each other
and finally two blocks remain as can be seen from Fig. 1. In
the following, we derive a kinematical model of the traveling
boundaries of two blocks of the neurons [26].

A. Kinematics of traveling waves with noise

Figure 2 shows a schematic diagram of changes in the
states of n—Ist and nth neurons (a) and a spatial pattern of
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FIG. 2. Schematic diagram of changes in the states of n—1st and
nth neurons (a) and a spatial pattern of the states of neurons (b).

the states of neurons (b) in the presence of spatiotemporal
noise. Consider the state x,,_; of the n—1st neuron, and let 7,;
be the time at which the state x,_; changes from positive to
negative and 1,;,; be the time at which the state x,,_; changes
from negative to positive (j=0) [Fig. 2(a)]. That is, the two
boundaries in the network pass the n—1st neuron at #,; and
t,j+1 alternately. We here consider the boundary changing the
signs of the states of the neurons from positive to negative.
The other can be dealt with in the same manner. When the
coupling gain g is large (g>1), the output function f(x) is
approximated by the sign function (a step function),

sgn(x)=—1, (x=0=1, (x>0). (2)
In the absence of noise, the state of the nth neuron then
changes in t,;=1<t,;,; as follows [12]:

dx (Dldt==x,() =1, (1, =1< 15,

x,(0) = exp[— (t = o) |[x, (1) + 1] =1, (ty; =t <t;1). (3)

The propagation time At,; of the boundary at the nth neuron
is defined and obtained as

xn(tzj + At2]) = O,

Aty =1In[1 +x,(1,))]
=1In{1 + exp[~ (tp; — tp;_1) ][x,(tpj_1) = 1] + 1}
=In{2 - 2 exp[- (t2j— t2j—l)] +exp[— (t2j - fz_,'—z)]
X[x,(t2j0) + 11}
~In 2 +1In{l — exp[~ (t5; — 15;-1) ]} (4)

We neglect the second exponential term since its value is
exponentially smaller than the first one. The propagation
time of the boundary decreases as the interval to the forward
boundary (the length of the forward block) decreases, and
hence the propagation velocity increases.

The noise term ow,(r) gives random variations in the
propagation time. They are evaluated with the first passage
time (FPT) #, of the following equation:

dx,(t)/dt = - x,(t) = 1 + ow, (1),
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50 =1, x,(,) =0, 5)

where it is assumed that the numbers of neurons in the
blocks are large and the neuron fully reaches the steady state
x,=1 after the previous passage of the forward boundary.
The mean m(t,) and variance o-z(tp) of the FPT are expressed
with the integral formulas [28] since Eq. (5) is equivalent to
the Ornstein-Uhlenbeck (OU) process, but we here derive
their approximate forms. When the variance of noise is small
(02<1), the mean of the FPT is approximated by Az=In 2 in
the absence of noise. The variance can be estimated with the
probability density function of x,(),

M, (D)), (0)] = VL2 m) 0, Jexpl=[x, (1) - m J/(207)},

m,=[x,(0) + 1]exp(- 1) — 1, 0'2,, = a')zc/Z[l —exp(-20].
(6)

The probability density function of the FPT is approximated
by the Gaussian distribution with the same variance as Eq.
(6) since the value of the slope of the trajectory at x,(z)=0
(t=In2) in the absence of noise is minus unity (d[2 exp(
—1)]/dt|,.;n»=—1). Hence we obtain

o?(t,) = 3/8 - ;. (7)

It can be shown that Eq. (7) agrees with the numerical inte-
gral of the formula for the OU process and the results of
computer simulation of Eq. (5) for 0,<0.1. The propagation
time of the boundary per neuron then becomes

Aty;=~In2+ In{1 — exp[- (12— t2j—1)]} +o(t,)w;,

E{w}=0, E{wwy}=5;. (8)

Let by and b; be the locations of the two boundaries (0
=b,,b; <L) [Fig. 2(b)], and let [ and L1 be the lengths of
the blocks with the neurons of negative and positive signs,
respectively (the numbers of neurons in the two blocks), i.e.,

I=by=by, (by>by)

=by—by+L, (by=bh). )

The propagation velocity of the boundaries b, and b, is ex-
pressed by

Uo=db0/d[% 1/A[2]
= l/(ln 2+ ln{l - eXp[— (t2] - t2j—])]} + (T(tp)sz),

U Zdb]/dt = l/At2j+]
= 1/(111 2+ ln{l - eXp[— (l2j+1 - t2]):|}
+o(t)waj). (10)

Finally we approximate the intervals f,;—1,;_; and f,j,1—1;
by (L—-1)At and [Ar with Ar=In 2, respectively, since the
difference in them only appear in double exponential terms.
By subtracting the second equation from the first equation in
Eq. (10), we then obtain the differential equation for changes
in the block length I,

021934-4



EFFECTS OF NOISE AND VARIATIONS ON THE...

dl/dt = dby/dt — db,/dt
=1/(In 2 +In{1 —exp[—In 2(L = D) ]} + o(t,)wy;)
= 1AIn 2 +1In[1 —exp(=1In 20))] + o(t,) w341}
~ 1/(In 2)*{exp[—In 2(L — )] — exp(= In 20)} + oyw(t)
= k{exp[— c(L - )] - exp(= D)} + opw(?),

k=1/(In2)% c¢=I2,

07 =20%t,)/(In 2)*=3/[4(In 2)*]o%, E{w(1)}=0,

E{w(t)w(t)}=8t-1"). (11)

The velocity of the boundary increases as the forward block
length decreases and the two boundaries end up by colliding.
The blocks merge and the oscillation then ceases. It has been
shown that the duration 7 of the transient oscillations in the
absence of noise increases exponentially with the number L
of neurons [12]. The duration T(/,) of the oscillations with
the initial block length 1(0)=I, is given by Egs. (A4) and
(A5) as

T = 1/(ck)exp(cL/2)(arctanh{exp[c(l, — L/2)]}

— arctanh[exp(— cL/2)]) = [exp(cly) — 1]}/ck.
(12)

B. Properties of the duration of the transient oscillations

In the presence of noise, the duration 7 of the transient
oscillations is dealt with the FPT problem of the stochastic
differential equation Eq. (10) with [(T)=0 or L. Following
[28], the mean m[T(l,)] and variance o[T(l,)] of the FPT
beginning from the initial block length /(0)=1; are then ob-
tained by

A L2
m[T(lp)] =2 f W(n)dnj (o} (O] dé ¢,
7

0

Iy L2
OQ[T(lo)]=4{ J m(n)dn J m[T(§)]/[0127T(§)]"d§}
n

0
- m[T(lo)]z,
m(y) = eXP(— ' M—W)dﬂ),
1
a(l) = k{exp[- c(L = 1)] - exp(~= cl)}, (13)

where we use a reflecting boundary at /=L/2 owing to the
symmetry of the system since the expression is simpler than
that with both absorbing boundaries at /=0 and L.

First, Fig. 3 shows the mean m[T(l,)] of the duration of
the transient oscillations in the network with L=40 and [,
=15 against the noise strength o,. The mean duration of a
thousand transient oscillations obtained with computer simu-
lation of Eq. (1) with g=10.0 under the following initial
condition is plotted with solid circles:
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FIG. 3. Mean duration m[T(l,)] of the transient oscillations vs
the noise strength o, in the network with g=10.0, L=40, and [,
=15. Numerical integral of Eq. (13) (a dashed line) multiplied by
r(=1.24) (a solid line), the mean duration of 1000 transient oscil-
lations of computer simulation of Eq. (1) under the initial condition
Eq. (14) with g=10.0 (solid circles) and with the sign function [Eq.
(2)] (open circles). Plotted also are numerical integrals of Eq. (13)
for [j=12, 13, and 14 with dotted, dash-dotted, and dash-dot-dotted
lines, respectively.

X,1(0)=—1, (15]1510)

-1, (y<n=L). (14)

Equation (14) corresponds to the initial block length [, of the
neurons of negative sign. The mean duration of those with
the sign function Eq. (2) for f(x) instead of tanh(gx) is also
plotted with open circles. The mean duration changes non-
monotonically with the strength of noise and increases in the
intermediate noise strength. This is never seen in the simple
OU process and is a resonancelike phenomenon of interest;
noise sustains the oscillations (noise-sustained oscillations).
Numerical integral of Eq. (13) for the mean FPT is plotted
with a solid line. The approximation by Eq. (13) agrees with
the simulation results for the sign function (open circles).
Note that the decreases in the mean FPT at small noise
strength (o, = 0.001) may be an artifact due to the instability
of the numerical integral since they do not appear in the
simulation. In order to fit the mean FPT to the simulation
results with the sigmoidal function f(x)=tanh(gx) in Eq. (1),
we need to take account of the difference between the propa-
gation time for the sigmoidal function and that for the sign
function. The duration in the absence of noise obtained
in the computer simulation is T(l,=15)=28 200 [f(x)
=tanh(gx),g=10.0] and T(l,=15)~=22800 [f(x): sign func-
tion]. The mean FPT multiplied by this ratio ry=~1.24 is
plotted with a dashed line in Fig. 3 and it agrees with the
simulation results (solid circles).

We just note a time step in computer simulation. Numeri-
cal calculation of Eq. (1) in the computer simulation was
done using the simple Euler method with the time step 0.01
for the sigmoidal function. However, a smaller step is re-
quired in calculation when using the sign function [Eq. (2)]
for f in Eq. (1). The unstable oscillations in this condition
never cease with time steps larger than 10~ in the absence of
noise, which is a numerical artifact. In the presence of noise,
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this artifact is relaxed and we take 0.001 for the time step. It
was confirmed that about the same results are obtained by
using smaller time steps.

Further, although we use the large value (g=10.0) for the
coupling gains in this paper, it can be shown that the results
of computer simulation with smaller coupling gains are
qualitatively the same if the coupling gains are not so close
to unity, e.g., g=1.2. Exponential increases in the duration
of the oscillations with the number of neurons in the net-
works for several values of g are shown in [10] and in Fig.
13 in the Appendix. The increasing rate of the logarithm of
the duration of the oscillations approaches that in the net-
works with the sign function as the gain g increases.

When the number of neurons is large (L>1), the FPT
problem of simpler form is given by letting exp[—In 2(L
—1)] be zero in Eq. (11) and a(l) in Eq. (13) as

dl/dt = -k exp(=cl) + aw(t),

a(l)=—-1/(In 2)%exp(-In 21). (15)

It can be shown that the mean FPT calculated with Eq. (15)
when L=40 agrees with the simulation results (data not
shown). An intuitive explanation for the increase in the du-
ration due to noise is as follows. The FPT of Eq. (15) in the
absence of noise is given by T(ly)=In 2(2/0—1). The ratio of
the increase T(ly+Al)—T(l,) due to a small positive fluctua-
tion Al in [, and the decrease T(ly)—T(l,—Al) due to a nega-
tive fluctuation —A/ is 2%/ and is always larger than 1. Then
the fluctuations due to noise tend to increase the FPT. In the
simple OU process, the deterministic term is linear and noise
always decreases the FPT. The increases in the duration of
the transient oscillations are due to the nonlinear exponential
terms in Eq. (15).

Numerical integrals of Eq. (13) for [,=12, 13, and 14 are
also plotted with dotted, dash-dotted, and dash-dot-dotted
lines, respectively, in Fig. 3. The peak of the mean duration
moves toward the region of large noise strength and the
maximum value decreases as the length /; of the initial block
decreases. When starting with /y=L/2, the oscillations never
cease in the absence of noise since the velocities of the two
boundaries are the same. The duration then monotonically
decreases as the noise strength increases. When the initial
states of the neurons are zero or randomly given about zero
[x,(0)=0], the mean duration of the transient oscillations is
approximated by the integral of T(l;)/L over 0=1,=L since
the length of the initial block is considered to be uniformly
distributed in 0=[,=L. The duration for the initial block
length close to L/2 (Iy=L/2) mainly contributes to it, and it
can be shown that the mean duration monotonically de-
creases as the noise strength increases with computer simu-
lation.

Next, we consider effects of the number of neurons for a
fixed initial length [, of the block. Figure 4 shows the mean
m[T(ly)] of the duration of the transient oscillations in the
network, in which the initial length is fixed as /=10 and the
number of neurons is changed as L=40, 60, 80, and 100.
Plotted are numerical integrals of Eq. (13) multiplied by r;
~1.24 (lines) and the mean duration of 10 000 transient os-
cillations obtained with computer simulation of Eq. (1) with
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FIG. 4. Mean duration m[T(l;)] of the transient oscillations vs
the noise strength o, in the networks with /=10 and L=40, 60, 80,
and 100. Numerical integrals of Eq. (13) multiplied by rp(=1.24)
(lines) and the mean duration of 10 000 transient oscillations of
computer simulation of Eq. (1) with g=10.0 under the initial con-
dition Eq. (14) (symbols).

g=10.0 under the initial condition Eq. (14) (symbols). The
simulation results agree about with Eq. (13) though the
variations are large when the number of neurons is large (L
=80,100). The peaks of the graphs of the mean duration
slightly move toward the region of large noise strength as the
number L of neurons increases. The maximum value in-
creases in proportion to the length L—I/, of the larger initial
block. Note that the large variations in the sample means are
due to a long tail in distribution of the duration shown below.
In fact, the standard deviations of 10 000 data were several
times as large as their means.

Further, Fig. 5 shows a normalized histogram of the du-
ration of 20 000 transient oscillations obtained with com-
puter simulation of Eq. (1) under Eq. (14) with g=10.0, L
=80, and [,=10 at the noise strength o,=0.05. The peak at
T=500 in the histogram corresponds to the duration of the
oscillations in the absence of noise, in which the block length
[ decreases to zero so that x,(T)=1 (1=n=L). The histo-
gram then decreases in a power-law form and the exponent is
about —2. The slope becomes gradual once at T~ 10°, which
corresponds to the mean duration of the oscillations in which
the block length reaches L so that x,(T)=-1 (1=n=<L).

The increase in the mean duration with the number L-1,
of neurons in the larger initial block and the power-law dis-
tribution of the duration resemble those in the Wiener pro-
cess with absorbing boundaries at /=0 and L, in which the
mean FPT increases with the lengths between an initial po-
sition and the boundaries (I, and L-1I,) [28]. Further, the
probability density function of the FPT is composed of those
of the FPT to the two boundaries [[(7)=0 and L] and it has
the form of 7732 in the intermediate region, which is ap-
proximated by the inverse Gaussian distribution or the posi-
tive stable distribution with exponent 1/2 [29]. However,
there is a difference in the exponent (-2 and —3/2) of the
powers between the ring neural networks and the Wiener
process.
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FIG. 5. Normalized histogram of the duration of 20 000 tran-
sient oscillations obtained with computer simulation of Eq. (1) un-
der Eq. (14) with g=10.0, L=80, I,=10, and the noise strength
o,=0.05.

IV. DECREASE IN THE DURATION OF THE
OSCILLATIONS DUE TO SPATIAL VARIATIONS

In this section, we consider effects of the random biases
Xp(yy ON the duration of the transient oscillations in the ring
neural networks. The strength of the spatiotemporal noise in
Eq. (1) is set to be zero (o,=0) in this section. It has been
shown that the exponential increases in the duration of the
oscillations with the number of neurons [Egs. (A4) and (A5)]
are degraded in the results of the circuit experiment with
operational amplifiers [11]. The decreases in the duration
were then ascribed to random biases in the amplifiers with
computer simulation [12]. In the following, properties of the
duration of the transient oscillations in the presence of biases
are derived with the kinematical model.

A. Kinematics of traveling waves with biases

First, we consider small common biases x,,)=m;, (1=n
= L) with 03,=0. It is equivalent to shifts in the stable steady
states by m; when the output function is the sign function
[Eq. (2)]. We use the following equation with a more general
form of the output function:

dxl/dt =—X1 +fd(xN),

dx,()/dt=—x,(t) + flx,.,(D], 2=n=1L),
fix)==1+d;, (x=0)
=1—d2, (x>()), (|d1 ,d2|< 1)

(16)

The negative and positive steady states are shifted to the
origin by d, and d,, respectively. When d,=-d,, the shifts
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are equivalent to the common bias m,=d;. The propagation
time At; of the boundary between the blocks of the neurons
in Eq. (16) then depends on the signs of the states of the
neurons. The propagation time At,; of the boundary chang-
ing the state of the nth neuron from positive to negative is
approximated as

dxn(t)/dtz —Xn(t) -1 +d1, (t2] <tr= t2j+l)’

x,(1) = exp[= (t = 1) [x,(12) + 1 =dy] = 1 + d;,

=t

(<t

Aty;=1In[1 +x,(1,)/(1 = d,)],
=0],

[xn(t2j) > 09 xn(t2j + Ath)

~In[(2 —d, = dy)/(1 = d)]+In{1 — exp[- (1,;
-t}

Xy(tyj) = = (2 =dy = dy)exp(ty;—tr;_) + 1 =dy,  (17)

where x,(,;) is approximated by letting x,(t,;_)=—1+d,.
The propagation time At,;,; of the boundary changing x,(z)
from negative to positive is approximated in the same way as

dx,(O/dt==x,(t) + 1 =d,, () <t=1y;,),

x,(1) = exp[= (t = t5j,) [, (t2j1) = 1 + do] + 1 = dy,
<t=ty),

(1241

Atyjp =1n[1 = x,(t5),1)/(1 = dy)],
+At;,,) =0],

[x,(t2j41) <0, x,(t2j41

~In[(2 - d| = d))/(1 = dy)] + In{1 — exp[~ (15},
-1}

Xp(tpj1) = (2-d; - dz)eXP[(lzjn - t2j)] —-1+d;. (18)

Changes in the block length [ (the number of neurons of
negative sign) are approximated by

di/dt = 1/Aty; = 1/Aty;, = 1/[In(2 - d, — dy) P[In(1 - d,)
—In(1 —d,) + exp(— Ao(L - 1)) —exp(— Atl)]
~ 1/(In 2)*{~ d, + d, + exp[— In 2(L - )]
—exp(=In20)}, (|dy|,|d,| < 1)

)

=kd + k{exp[— c¢(L - )] — exp(= cl)},
[k=1/(In2)% c¢=In2, d=—-d,+d,], (19)

where we approximate as ty;—tp;_=(L—=1)At and ;.1 ~1;
=[Ar with Ar=In 2. There is a small constant velocity kd
(d=-d,+d,) owing to the shifts d;, and d, in the steady
states. The block length then tends to increase or decrease
according to its sign. Intuitively, when the steady states are
shifted to the origin, the attracting forces to them are weak-
ened and the transient time to them increases. When the posi-
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tive steady state is more shifted to the origin than the nega-
tive steady state (d,>d,;), the value of d is positive and the
length [ of the block with the neurons of negative sign in-
creases so that the neurons in the network tend to reach the
negative steady states (—=1+d,).

The common bias x,,,,)=m,, is equivalent to the total shift
d=2my, (-d,=d,=m,;). When biases vary randomly, the time
in which the boundaries propagate around the network is just
the sum of the propagation time of the all L neurons. Effects
of random biases are thus approximated by those of the shifts
in the steady states by letting the total shift be twice the
mean of the biases, i.e. d=2m(x,()=2=5_ 1 x, (/L.

B. Duration of the oscillations with fixed initial block length

There are the following critical length /. and total shift d,.
in Eq. (19), below which the block length [ decreases to zero,
and over which [ increases to L:

I = In{2/[d + V& + 4 exp(— eL) }c.

d.={exp(=cl) —exp[- c(L-D]}. (20)

When d is positive (d,>d,), the critical length [, is smaller
than L/2. The duration of the transient oscillations with the
initial block length /(0)=I, is obtained as

T, =1n[A(0)/A(ly) V/[keVd® + 4 exp(- cL)],
[ly<I. IT,)=0],

T, = In[A(L)/A(lp) 1{ke\[d* + 4 exp(-cL) },
lo>1, U(Ty)=L],

.
exp(—cl') = [d+ Vd* + 4 exp(- cl')]
exp(=cl') = [d = Vd* + 4 exp(=cl')]’

All') = (21)

where T and T, correspond to the block length decreases to
zero [1(T})=0] and increases to L [I(T,)=L], respectively, so
that the duration of the oscillations in which the states of the
neurons reach —1+d; and 1-d,, respectively. Simpler forms
of them for positive d are given by letting L be infinity in Eq.
(19) as

dl/dt = k[d — exp(- cl,)],

l.=In(1/d)/c, d.=exp(-cl),

T, =1n{(1 = d)/[1 - d exp(cly)1}/(ckd),
llp<I, I(T})=0],

T, =1n{[d exp(cL) — 1)/[d exp(cly) — 11}/(ckd),

llg> 1, (T3)=L],

Ty =In({1 +d exp[c(L - Iy)]}/(1 + d))/(ckd),
[ZO > lL" I(TZ) = L]7 (22)

where T, is obtained by letting d—-d, ly— L-1I,, and
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FIG. 6. Duration T of the transient oscillations vs the initial
block length /5 (0</y<L) with L=40 and g=10.0 in the presence
of random biases of 0;,=0.01 and the mean m(x;,))=0, 107, 1073,
107!, Plotted are examples of the results of computer simulation of
Eq. (1) under Eq. (14) (symbols), Eq. (21) (lines), and Eq. (A4)
for m(x,(,))=0. The result of the experiment in [9] (open squares)
and the result of simulation (crosses) and Eq. (21) with n(x,))
=-1073 (a dash-dot-dotted line) are also plotted.

[(T,)=0, which gives better approximation of Eq. (21).

For a fixed small total shift d>0, the duration 7} in-
creases exponentially with /; when /y<<[, and becomes infin-
ity at [y=I.. Then T, decreases almost linearly with /, when
ly>1. as

T, = [exp(cly) = 1)/(ck),
—o, (lg— 1),
Ty~ (L—lp)/kd), (I, <lg<L-L),
~fexple(L—I)] = 1M(ck), (L—1,<1,<L),
I~ In(1/d)/c. (23)

o0<<li,),

The duration increases exponentially with /;, up only to 7
=T,(l.)=(1-d)/(ckd) in the side regions 0<<[,<I. and L
—1.<ly<L. The increase in the duration is almost linear
with [ in the middle region [.<ly<<L-I. and is up to Ty,
=T,(I.)=(L-1.)/(kd). The width of the region about [ =1,
in which the duration increases over Ty is exponentially
small.

Figure 6 shows the duration T of the transient oscillations
against the initial block length [, (0<l,<<L) with L=40 in
the presence of random biases. The mean m(xy(,)(=d/2) of
the biases is set to be 0, 107>, 1073, 10~". Plotted are ex-
amples of the results of computer simulation of Eq. (1) with
¢=10.0 under Eq. (14) (symbols), Eq. (21) for m(x,))
=107, 1073, 107!, and Eq. (A4) for m(xp(,)) =0 (lines). In the
simulation the values of the biases are drawn from Gaussian
random numbers of the variance 07=0.01% and the mean
m(xp,) of the biases is adjusted by shifts. The duration in
the simulation with the mean bias zero (solid circles) hardly
changes from that [Eq. (A4)] in the absence of biases (a solid
line) even though there are variations in the biases. As the
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FIG. 7. Duration T of the transient oscillations vs the mean bias
m(xp(,)) for the initial block length [o=10 and 30 with L=40. Plot-
ted are examples of the results of computer simulation of Eq. (1)
with ¢=10.0 under Eq. (14) (open and solid circles), Eq. (21) (a
solid line), and Eq. (22) (a dashed line).

mean bias increases, the exponential increases in the duration
degrade in the middle region (I,=~L/2) and they only appear
near the both sides ([;=0,L). Equation (21) agrees with the
simulation results for m(x(,)=10", 107, 107", It can be
shown that Eq. (22) also agrees with them except for [,=1.
in T,. It can also be shown that Eq. (23) agrees about with
them though it is slightly smaller than them in the middle
region ([, <ly<L-1,) (data not shown). Further, the result of
the experiment in [11,12] is plotted with open squares. The
result of the simulation (crosses) and Eq. (21) with m(x,,))
=-107% (a dash-dot-dotted line) agree with it except for [,
~1, (I.~31.0). The expected value of the standard deviation
(SD) o, of the population of the biases is m(xy(,)L"?
=~().003 and corresponds to 36 mV in the actual circuit. It is
not so larger than the standard value of the OP amp (less than
10 mV). Note that it was checked with computer simulation
that the duration hardly vary when the mean biases m(x,,))
are set to be the same even though the values of the biases
vary randomly. It was also checked that the common biases
by m,=m(xy,) in Eq. (1) and the shifts in the steady states
by d=2m(xy,) in Eq. (16) give almost the same results.

For a fixed initial length [,<<L/2, the duration 7 in-
creases monotonically with d and becomes infinity at d=d..
Then T, decreases in proportion to the inverse of d. Figure 7
shows the duration 7 of the transient oscillations against the
mean bias m(x,,) for the initial length /,=10 and 30 with
L=40. Plotted are examples of the results of computer simu-
lation of Eq. (1) with g=10.0 under Eq. (14) (open and solid
circles), Eq. (21) (a solid line), and Eq. (22) (a dashed line).
Equations (21) and (22) agree with the simulation results
though the location of the critical shift (d,~0.000 49)
slightly deviates. This is ascribed to the finite gain g and it
can be shown the results of computer simulation with the
sign function [Eq. (16)] are well fitted to Egs. (21) and (22).
Asymmetry or random biases in the steady states can then
sustain the transient oscillations about the critical length and
shift.

C. Duration of the oscillations under random initial conditions

When the initial states x,(0) of the neurons are given ran-
domly about the mean m,, of the biases, the initial block
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lengths [, are regarded to be distributed uniformly in (0,L).
Using Eq. (21), the probability density function i(T) of the
duration 7 of the transient oscillations is then given by

1 1
+ )/L
|dT/dly|  |dT,/dl|

h(T) = (

ckDB, exp(- ck\/BT)
[v2= 1By exp(= ck\DT)I[1 - B, exp(~ ckDT)]
ckDB, exp(— ck\s”BT)
+ — — >
[v2 = y1B; exp(= ckVDT)][1 - B, exp(~ ck\DT)]

d=2m(xp,), D= d*+4 exp(-cL),

yl=(d—D)/2, y2=(d+D)/2,

By=(1-y)/(1-y)), By=[exp(-cL)-y,)[exp(-cL)
-yl (24)
Using Eq. (22), it is given by
kd 1-d
Wh=—|——"7"—"
L [ exp(ckdT)-1+d
1+d
+
—exp(—ckdT)+ 1 +d

] O0=T=Ty),

In({1 +d exp[c(L-1.)]}/(1+d))
ckd ’

Ty= Tz(lo = lc) =

{Ty — [exp(cLi2) = 1]/(ck), (d— 0)}, (25)

where the second term in the right-hand side of the first
equation must be limited to 7, owing to the derivation of 7,
in Eq. (22). This upper bound Ty, is equal to the maximum
value T(L/2)=[exp(cL/2)—1]/(ck) in Eq. (A5) as well as
the cutoff T.=exp(cL/2)/ck in the absence of biases, below
which the duration is distributed in the form of 1/7T (the
Appendix). Further, using Eq. (23), it is approximated as

WT) < UT, [T<T,=~(1-d)(ckd)],
L2l a1~ k)
L(Tyy = Typ) ’ e

=—In(d)/(ckd) < T < Ty],

“exp(=NT), (T>Tpy = (L-1)/(kd)
=[L+1n(d)/c]/(kd). (26)

The power-law distribution for small 7' (<T,) and the expo-
nential distribution for large T (>T};) are the same proper-
ties as those in the absence of biases (d=0). However, the
duration is uniformly distributed in the middle region Ty,
<T<Ty of width O(L/d) owing to the biases. This flat
region corresponds to the linear increase of 7, with [, in
(I.,L-1,) in Eq. (23). Further, the upper bound T}, of the
region increases only linearly with the number L of neurons
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FIG. 8. Normalized histograms of the duration of 10 000 tran-
sient oscillations obtained with computer simulation of Eq. (1) with
¢=10.0, L=40, and m(x,,))=0.001 (solid circles) and of 500 tran-
sient oscillations observed in the experiment in [9] (open circles),
Eq. (24) (a solid line) and Eq. (25) (a dashed line).

and not exponentially. Figure 8 shows normalized histograms
of the duration of 10 000 transient oscillations obtained with
computer simulation of Eq. (1) with g=10.0, L=40 and
m(xp(,))=0.001 (solid circles) and of 500 transient oscilla-
tions observed in the experiment in [11] (open circles). In the
simulation, the values of the biases are drawn from Gaussian
random numbers with 0,=0.01 and the means adjusted to
m(xp(,))=0.001 by shifts, and the initial states x,(0) of neu-
rons are drawn from Gaussian random numbers with the
mean 0 and SD 0.1. Plotted also are the probability density
functions of Eq. (24) (a solid line) and Eq. (25) (a dashed
line). They hardly differ from each other except for T=Ty
(=5300) and agree with the simulation results. The values of
T;, Ty, and Ty, in Eq. (26) are about 346, 2153, and 7455,
respectively, which also agree about with the results of the
simulation and experiment.

The mean duration m(7) of the oscillations is evaluated
with T} and T, in Eq. (23) as

fe L L-2I. 2(1/d-1+Ind)
m(T) = T]dl + Tzdl /L = + B
0 . 2kd kL

L+21In(d)/c 2
= + .
2kd *kdL

(27)

The first term in the right-hand side corresponds to 75 in
(l.,L-1.) and is dominant except for d—0, which is
also derived with A(T) in (Tyy,Ty;) in Eq. (26). The mean
duration decreases in inversely proportion with the shift
d [=m(x(,))/2] and in proportion to the number L of neu-
rons. The exponential increases in the duration of the tran-
sient oscillations with the number of neurons are then de-
graded in the presence of shifts or biases in the steady states.
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FIG. 9. Mean m(T) of the duration of the transient oscillations
vs the mean bias m(xy(,) (=d/2) in the network of L=40 neurons.
Plotted are the mean duration of 1000 oscillations obtained with
computer simulation of Eq. (1) with g=10.0 for each bias (solid
circles) and of 500 oscillations observed in the experiment in [9]
(an open circle at [m(x(,))|=0.001), the numerical integral with Eq.
(24) (a solid line), and Eq. (27) (a dashed line).

Figure 9 shows the mean m(T) of the duration of the tran-
sient oscillations against the mean bias m(x,,)) (=d/2) in the
network of L=40 neurons. Plotted are the mean duration of
1000 oscillations obtained with computer simulation of Eq.
(1) with g=10.0 for each bias (solid circles) and of 500 os-
cillations observed in the experiment in [11] [an open circle
at [m(x,(,))|=0.001]. Plotted also are the numerical integral
Joh(T)dT with Eq. (24) (a solid line) and Eq. (27) (a dashed
line). In the simulation, the values of the biases are Gaussian
random with 0,=0.01 and the mean m(x,,) adjusted in
each, and the initial states x,(0) of neurons are Gaussian
random with the mean m(x,,) and SD 0.1. The estimates
with Eq. (24) agree with the results of the simulation and
experiment. It can be shown that the estimates with numeri-
cal integrals with Egs. (25), (21), and (22) agree with them.
Equation (27) gives rough estimates for the mean duration in
the range (7>1077) in Fig. 9.

Figure 10 shows the mean duration m(7T) of the transient
oscillations against the number L of neurons for a fixed mean
bias m(x,))=0.01. Plotted are the mean duration of 10 000
oscillations obtained with computer simulation of Eq. (1)
with g=10.0 and random biases Gaussian with 0;,=0.01 and
m(xp(,))=0.01 under random initial conditions x,(0) of
Gaussian with the mean 0 and SD 0.1 (solid circles). Plotted
also are the estimates with the numerical integrals [§4(T)dT
with Eq. (24) (a solid line) and Eq. (25) (a dashed line), and
Eq. (27) (a dotted line). [The numerical calculation with Eq.
(24) in our system gives no results for L=70 owing to nu-
merical complexity.] The estimates with Egs. (24) and (25)
increase linearly with the number of neurons. Equation (27)
is slightly larger than the estimates with Egs. (24) and (25),
but the increasing rates are almost the same. However, the
increasing rate of the simulation results decreases as L in-
creases (L=60) although they increase in proportion to L
and agree with the estimates for L =50. This decrease in the
increasing rate is explained as follows.

It can be shown with computer simulation that the neu-
rons are divided into four or more blocks, in which the signs
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FIG. 10. Mean duration m(T) of the transient oscillations vs the
number L of neurons for a fixed mean bias m(x,(,)=0.01. Plotted
are the mean duration of 10 000 oscillations obtained with computer
simulation of Eq. (1) with g=10.0 and random biases of o}, 0.01
under random initial conditions x,(0) of mean 0 and SD 0.1 (solid
circles), the numerical integrals with Eq. (24) (a solid line) and Eq.
(25) (a dashed line), and Eq. (27) (a dotted line). Plotted also is the
mean of the duration obtained with computer simulation of Eq. (1)
under Eq. (14) for the initial length [,=1 to L (open circles).

of the states are the same in each block, when the number of
neurons is large, i.e. several blocks are generated. The blocks
then merge one by one according to the same mechanism as
that for two blocks, and finally two blocks remain. In this
process the lengths [, of the negative blocks over and close
to /., which result in long duration, increase in the presence
of positive mean biases. Then the distribution of the length
of the negative block in the final two blocks is not uniform in
(0,L) but is negatively skewed to L. The mean duration de-
creases consequently since the proportion close to zero is
large. The same deviation occurs when the mean bias is
negative. In fact, the mean EZLO 1T(ly)/L of the duration ob-
tained with computer simulation of Eq. (1) under Eq. (14) for
the initial length /y=1 to L is also plotted with open circles in
Fig. 10, which approximates the mean duration under the
uniform distribution of [ in (0,L). It increases linearly even
for large L as the estimates with Eq. (25), while the increas-
ing rate is slightly larger.

D. Ensemble mean of the duration of the oscillations under an
identical distribution of biases

Finally, we consider an ensemble of the networks consist-
ing of the neurons the biases x;,) of which obey the Gauss-
ian distribution with the mean m;,=0 and SD o,. The mean
of the biases m(x,,) in each network then varies and obeys
the Gaussian distribution with the mean 0 and SD o,/L'?,
where L is the number of neurons in the network. The prob-
ability density function h(T'; o) of the duration T of the tran-
sient oscillations occurring from random initial states x,,(0)
over an ensemble of the networks is then given by the fol-
lowing convolution:

W(T; ) = f W) h(d; 0,)dd

v n(1)
=2 f exp[- d¥/(202)]dd,
. \/_2770'd pl 2]
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O4= 2(Tb/Ll/2,

d = 2m(xb(n)) N

In({1 + dy explc(L - 1)}/ (1 +dy))
U:T=
deU

. (28)

where d; comes from Ty, in Eq. (25) and is used an appro-
priate upper bound for d. By replacing h(T) with m(T), an
explicit form of A(T;0;,) is obtained as

Wm(T);0,] = h(d;o,)d d/dm(T)

oL e (207
2\,Ero-dkm2(T)exp{ [LI2km(T) ]/ (207)}

L3/2 ( _ L3 )
~ ex ,
4 \/Zm'bkmz(T) P 320 ikzmz(T)

_ L+21n(d)/c

m(T) 2d

=~ L/(2kd),

d; =exp(-cL/2),

L exp(cL/2)

{0 <m(T) < Ty (d)[=Tyr(d,)] = T} ,

(29)

where we use the first term {[L+2 In(d)/c]/(2kd)} in Egq.
(27) for m(T), and d; comes from m(T)=0, which gives the
upper bound T,(d;) for T. The distribution of the duration
thus has a power-law form (7-2) of exponent 2 for large T up
to Ty(d;). Figure 11 shows a normalized histogram of the
duration of 10 000 transient oscillations obtained with com-
puter simulation of Eq. (1) with g=10.0 and L=40 (solid
circles). The biases x,, are drawn from the Gaussian distri-
bution with m,=0 and ¢,=0.01, and x,(0) are Gaussian ran-
dom with the mean 0 and SD 0.1 in each run. Plotted also are
the numerical integrals h(T;0;,) of Eq. (28) with Egs. (24)
and (25) for h(T) with solid and dashed lines, respectively.
They hardly differ from each other except 7=~ 10° and agree
with the simulation result. The slope of the graph is —1 for
small 7 (<103), which might reflect the form of 1/7 in h(T)
for T<T, in Eq. (26). The slope becomes once gradual and
then steeper than —2 as T increases. Equation (29) is plotted
with a dotted line, the slope of which is —2 for large 7. The
difference in the exponent of the power laws between the
simulation result and Eq. (29) is ascribed to the upper bound
T, in Eq. (25) and the cutoff 7, (=7 X 10° for L=40), be-
yond which the duration obeys the exponential distribution.
This power-law form 772 in the distribution appears clearly
as the number L of neurons increases. A normalized histo-
gram of the duration of 10 000 oscillations obtained with
simulation (open circles) and Eq. (29) (a dash-dotted line)
for L=80 are also plotted in Fig. 11. Equation (29) agrees
with the simulation result for 7> 10* (T~ 10'?).

The mean duration of the transient oscillations over an
ensemble of the networks with random biases with the mean
m,=0 and SD o, is approximated using m(T) and d; in Eq.
(29) as
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0 1 2 3 4 5 6 7

® simulation (L=40)
Egs. (28), (24) (L=40)
— — Egs. (28), (25) (L=40)
----Eq. (29) (L=40)

O simulation (L=80)
— - -Eq. (29) (L=80)

FIG. 11. Normalized histogram of the duration of 10 000 tran-
sient oscillations obtained with computer simulation of Eq. (1) with
£=10.0, L=40, biases x,, of m;, 0 and o7, 0.01 and the initial states
x,(0) of neurons of the mean 0 and SD 0.1 (solid circles), the
numerical integrals 4(T'; 03,) of Eq. (28) with Eq. (24) (a solid line)
and Eq. (25) (a dashed line) for i(T), and Eq. (29) (a dotted line).
Plotted also are a normalized histogram of the duration of 10 000
oscillations obtained with simulation (open circles) and Eq. (29) (a
dash-dotted line) for L=80.

m(T;(Tb)=f Th(T;0,,)dT
0

0

“ L 1
~2| ———exp[-d¥(2d2))d d
de d \’,Em_d pl (207)]

CL5/2

~— (30)
4\2 ko,

The mean duration thus increases in proportion to the five-
halves power of the number L of neurons. Figure 12 shows
the ensemble mean m(T'; 0;,) of the duration in the networks
with 05,=0.01 against L¥?> (10=L=100). Plotted is the
mean duration of 10 000 oscillations obtained with computer
simulation of Eq. (1) (solid circles), in which x,, and x,(0)
are given as above. Plotted also are the estimates with the
numerical integral with Egs. (25) and (28) (a solid line), and
Eq. (30) multiplied by 0.2 (a dashed line). Estimation with
the simulation is unstable for large L since the SD of the
duration for L =50 was about ten times as large as the mean
owing to the power-law tail of the distribution. The simula-
tion results fit about to the estimates with the numerical in-
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FIG. 12. Ensemble mean m(T;0},) of the duration in the net-
works with ¢,=0.01 against L2 (10=L=100). Plotted are the
mean duration of 10 000 oscillations obtained with computer simu-
lation of Eq. (1) (solid circles), the estimates with the numerical
integral with Egs. (25) and (28) (a solid line), and Eq. (30) multi-
plied by 0.2 (a dashed line).

tegral, but tend to be lower than them for L=80. The large
value at L=85 is due to one outlier. This decrease for large L
is also ascribed to the nonuniformity in the distribution of the
initial block length /, due to the generation of four or more
blocks, as mentioned in the last part of Sec. IV B. The expo-
nent of the power of L in the estimates with the numerical
integral is slightly larger than 5/2 and is close to 3. Equation
(30) is about five times as large as the simulation results and
the estimates with the numerical integral, which is due to the
fact that the approximation of the probability density func-
tion by Eq. (29) agrees with Eq. (28) only for large 7. Al-
though there is such inconsistency, the increasing rate of the
mean duration become more than five-halves power of the
number L of neurons owing to the power-law distribution of
the duration due to variations in the mean bias.

V. CONCLUSION AND FUTURE WORK

The kinematical description of the traveling waves in the
ring networks of unidirectionally coupled neurons in the
presence of additive noise and spatial variations was derived.
When the couplings are positive or in general the number of
negative couplings is even, generated are at lease two trav-
eling waves of the boundaries of the blocks of the neurons in
which the signs of the states are the same and thus there are
inconsistencies at the boundaries. These traveling waves re-
sult in the oscillations of the states of the neurons. The ve-
locities of the two boundaries depend on the difference of the
exponential of the lengths of the blocks (the numbers of
neurons in the blocks) and their difference becomes expo-
nentially small as the number of neurons increases. As a
result it takes an exponentially long time until the two
boundaries collide and the blocks merge so that the oscilla-
tion ceases.

First, it was shown that additive noise of intermediate
strength extends the duration of the transient oscillations
when the initial states of the neurons are fixed, e.g., the ini-
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tial lengths of the blocks of the neurons are fixed. The expo-
nential nonlinearity in the interaction between the traveling
waves causes these noise-sustained oscillations. Further, the
duration of the noise-sustained oscillations is distributed ap-
proximately in a power-law form of exponent 2. When in-
creasing the number of neurons with the smaller initial block
length fixed, the mean duration of the oscillations increases
with the larger initial block length. These behaviors resemble
those of the FPT of the Wiener process. The exponential
increases in the duration with the number of neurons still
remain although the mean duration of the oscillations occur-
ring under random initial conditions decreases as the noise
strength increases.

Next, it was shown that random biases or shifts in the
steady states reduce the increasing rate of the duration of the
transient oscillations with the number of neurons from an
exponential order to polynomial. These spatial variations
cause nonzero difference between the velocities of the trav-
eling waves of the boundaries of the blocks of the neurons.
The duration of the oscillations then increases almost lin-
early with the initial block length. Consequently, the duration
of the oscillations occurring under random initial conditions
is then distributed uniformly in most regions as the absolute
values of the mean of biases or shifts increase. The mean
duration then increases in proportion only to the number of
neurons under fixed configurations of biases or shifts. Fur-
ther, the distribution of the duration of the oscillations in an
ensemble of the networks with random biases obeying an
identical distribution has a power-law form of exponent 2
below the cutoff. The ensemble mean of the duration then
increases in proportion about to the five-halves power of the
number of neurons. This reduction of the increasing rates of
the duration of the oscillations is caused by the asymmetry of
the output function and the exponential increases remain
when the mean bias is not shifted even though the value of
each bias varies.

The exponential dependence of the transient time on the
system size has also been found in more complicated pat-
terns and systems as mentioned in Sec. L. It is expected that
transient spatiotemporal chaos in complex systems, e.g.,
coupled map lattices is caused by intrinsically similar
mechanism to that in the ring neural networks. Spatiotempo-
ral noise and spatial variations can then have qualitatively
the same effects on the transient time in these systems as that
obtained in this paper. In particular, resonancelike effects
with spatiotemporal noise might exist and enhance chaotic
dynamics in the transient states. Effects of noise and varia-
tions on the transient chaos in these systems are of interest
and their analysis is future work.

APPENDIX: PROPERTIES OF THE DURATION OF THE
OSCILLATIONS WITHOUT NOISE AND BIASES

Properties of the duration of the transient oscillations in
the following ring neural network in the absence of noise and
biases are summarized [12]:

Tdx\/dt=—x; + f(x),

Tdx,ldt=-x,+ f(x,_;), 2=n=<L),
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< 1.001 A 1.01 o 1.1

® 12 A 13 " 15

+ 20 x 100 X sign
Eq. (A4) — — Eq. (A5)

FIG. 13. Semilog plot of the duration 7 vs the initial block
length [ (1=1,=19) in the network of 40 neurons (L=40) without
noise and biases. Plotted are the results of computer simulation of
Eq. (A1) under Eq. (14) with several values of g (symbols), Eq.
(A4) (a solid line), and Eq. (A5) (a dashed line).

f(x) =tanh(gx), (g>1). (A1)

As shown in Fig. 1(a), the neurons are soon divided in two
blocks in which the signs of the states x, of neurons are the
same and the boundaries between the blocks travel in the
direction of the coupling. The length / of the smaller block
(the number of neurons in the block) changes as

dl/dt=1/{In 2 + In(1 = 2~}
—14{AIn 2 +In(1 =27H7}
= k{exp[- c(L - )] - exp(= cl)},

k=1/[rIn2)?], c¢=In2 (A2)
and the solution is given by
explcl(t)] = exp(cL/2)tanh(- exp(— cL/2)ckt
+ arctanh{exp[c(ly — L/2)1}),
lh=100), (0=[,=L/2). (A3)

The duration T of the transient oscillations is given by setting
I(T)=0,

T = 1/(ck)exp(cL/2)(arctanh{exp[c(l, — L/2)]}

— arctanh[exp(— cL/2)]). (A4)
A simpler form is obtained by letting L be infinity as
dl/dt = - k exp(-cl),
1(r) = 1/c In[exp(cly) — ckt],
T=[exp (cly) - 1))/(ck), [I(T)=0]. (A5)

These expressions are applicable to the networks with not so
small coupling gains [10]. Figure 13 shows a semilog plot of
the duration 7T against the initial block length I, (1=,
=19) in the network of 40 neurons (L=40). Plotted are the
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results of computer simulation of Eq. (A1) under the initial
condition Eq. (14) (symbols), Eq. (A4) (a solid line), and Eq.
(A5) (a dashed line). Computer simulation was done using
the simple Euler method with a time step 0.01. The results
for the coupling gain g=1.001 (open circles), 1.01 (open
triangles), 1.1 (open squares), 1.2 (solid circles), 1.3 (solid
triangles), 1.5 (solid squares), 2.0 (daggers), and 10.0 (aster-
isks) are plotted. The result of computer simulation with the
sign function [Eq. (2)] and a time step 107 was also plotted
(crosses). The duration increases exponentially with the ini-
tial block length (the number of neurons in the initial smaller
block). Equations (A4) and (A5) hardly differ from each
other and agree with the simulation results for g=1.2, while
the increasing rates vary slightly. The increasing rates reduce
as the coupling gain decreases to unity (g=1.1), in which
the stable states of the neurons are close to zero (ixl,EO)
and the kinematics with the sign function (x,=1) is inappro-
priate.

When the initial states x,(0) of neurons are given ran-
domly, the initial length [, of the generated smaller block is
distributed uniformly in (0,L/2). The probability density
function & of the duration of the transient oscillations is then
obtained as

h(T) = |dT(ly;L)/dlo|" /(LI2)
=2k exp(— cL/2)cosech(2{exp(— cL/2)ckT
+ arctanh[exp(- cL/2)1})2/L. (A6)

There is a cutoff point T,=exp(cL/2)/(ck) at which the form
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of the probability density function changes. When T<<T,, the
approximate form is derived by using arctanh(e)=~e and
sinh(g)=¢ as

h(T) = k/(ckT + 1)2/L,
- 1]/(ch)},

which is also derived directly from Eq. (A5). The duration T
is thus distributed in the form of 1/7. When T>T,, the form
is approximated by the exponential distribution by using
sinh(x) =exp(x)/2 (x> 1) for large T as

{0=T=T,.=[exp(cL/2)
(A7)

h(T) = N exp(=\T), \=2ckexp(-cL/i2), (T=T,).

(A8)

The mean m, the variance o2, and the coefficient of variation
Cy of the duration T are expressed by using Egs. (A5) and
(A7) for large L as

m[T(L)] = 2[exp(cL/2) — 1 — cL/2)/(c*kL),

X (T(L)) =[exp(cL) — 4 exp(cL/2) + 3 + cL]/(c*k’L)
—{m[T(L)]}*,

Cy[T(L)]= o[ T(L)Ym[T(L)] = (cL)"?12, (L>1).

(A9)

The mean and standard deviation increase exponentially with
the number L of neurons.
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